Humidity-enhanced wet adhesion on insect-inspired fibrillar adhesive pads

نویسندگان

  • Longjian Xue
  • Alexander Kovalev
  • Anna Eichler-Volf
  • Martin Steinhart
  • Stanislav N. Gorb
چکیده

Many insect species reversibly adhere to surfaces by combining contact splitting (contact formation via fibrillar contact elements) and wet adhesion (supply of liquid secretion via pores in the insects' feet). Here, we fabricate insect-inspired fibrillar pads for wet adhesion containing continuous pore systems through which liquid is supplied to the contact interfaces. Synergistic interaction of capillarity and humidity-induced pad softening increases the pull-off force and the work of adhesion by two orders of magnitude. This increase and the independence of pull-off force on the applied load are caused by the capillarity-supported formation of solid-solid contact between pad and the surface. Solid-solid contact dominates adhesion at high humidity and capillarity at low humidity. At low humidity, the work of adhesion strongly depends on the amount of liquid deposited on the surface and, therefore, on contact duration. These results may pave the way for the design of insect-inspired adhesive pads.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanoporous Monolithic Microsphere Arrays Have Anti-Adhesive Properties Independent of Humidity

Bioinspired artificial surfaces with tailored adhesive properties have attracted significant interest. While fibrillar adhesive pads mimicking gecko feet are optimized for strong reversible adhesion, monolithic microsphere arrays mimicking the slippery zone of the pitchers of carnivorous plants of the genus Nepenthes show anti-adhesive properties even against tacky counterpart surfaces. In cont...

متن کامل

Physical principles of fluid-mediated insect attachment - Shouldn’t insects slip?

Insects use either hairy or smooth adhesive pads to safely adhere to various kinds of surfaces. Although the two types of adhesive pads are morphologically different, they both form contact with the substrate via a thin layer of adhesive fluid. To model adhesion and friction forces generated by insect footpads often a simple "wet adhesion" model is used, in which two flat undeformable substrate...

متن کامل

Comparison of smooth and hairy attachment pads in insects: friction, adhesion and mechanisms for direction-dependence.

Adhesive pads on the legs of animals can be classified as either 'smooth' or 'hairy' (fibrillar). It has been proposed that the hairy design conveys superior and controllable adhesion. However, no study has yet compared the basic performance of both systems. As such, we measured single-pad friction and adhesion forces in sample hairy (Gastrophysa viridula) and smooth (Carausius morosus) pads an...

متن کامل

An integrative study of insect adhesion: mechanics and wet adhesion of pretarsal pads in ants.

Many animals that locomote by legs possess adhesive pads. Such organs are rapidly releasable and adhesive forces can be controlled during walking and running. This capacity results from the interaction of adhesive with complex mechanical systems. Here we present an integrative study of the mechanics and adhesion of smooth attachment pads (arolia) in Asian Weaver ants (Oecophylla smaragdina). Ar...

متن کامل

An Integrative Study of Insect Adhesion: Mechanics and Wet Adhesion of Pretarsal Pads in Ants1

SYNOPSIS. Many animals that locomote by legs possess adhesive pads. Such organs are rapidly releasable and adhesive forces can be controlled during walking and running. This capacity results from the interaction of adhesive with complex mechanical systems. Here we present an integrative study of the mechanics and adhesion of smooth attachment pads (arolia) in Asian Weaver ants (Oecophylla smara...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015